
Temporally Stable Metropolis Light Transport Denoising using
Recurrent Transformer Blocks
CHUHAO CHEN, University of California San Diego, USA
YUZE HE, Tsinghua University, China
TZU-MAO LI, University of California San Diego, USA

MLT Input (128spp) IDANF Ours Reference

(a) Noisy Input (b) IDANF (c) Ours (d) Reference
PSNR: 29.25 SSIM: 0.857 FoVVDP: 8.968 PSNR: 27.94 SSIM: 0.837 FoVVDP: 8.820

Fig. 1. The illustrated example is one middle frame from a 60-frame MLT animation of the sceneMonkey [Ebke 2021]. The left-bottom crop is a detailed region
of this frame and the right-bottom crop is an average over the 7 consecutive frames in this detailed region. In this example, the state-of-the-art sequence
Monte Carlo denoisers (b) [Işık et al. 2021] suffers from large bias, excessive blur and square artifacts from dilated kernels, while our denoiser (c) produces
high-quality results and keeps the temporal stability. All the metrics are calculated on the whole animation.

Metropolis Light Transport (MLT) is a global illumination algorithm that
is well-known for rendering challenging scenes with intricate light paths.
However, MLT methods tend to produce unpredictable correlation artifacts
in images, which can introduce visual inconsistencies for animation render-
ing. This drawback also makes it challenging to denoise MLT renderings
while maintaining temporal stability. We tackle this issue with modern
learning-based methods and build a sequence denoiser combining the re-
current connections with the cutting-edge vision transformer architecture.
We demonstrate that our sophisticated denoiser can consistently improve
the quality and temporal stability of MLT renderings with difficult light
paths. Our method is efficient and scalable for complex scene renderings
that require high sample counts.

CCS Concepts: • Computing methodologies → Ray tracing; Neural
networks; Image processing.

Additional Key Words and Phrases: Denoising, Metropolis Light Transport

Authors’ addresses: Chuhao Chen, chc091@ucsd.edu, University of California San
Diego, USA; Yuze He, hyz22@mails.tsinghua.edu.cn, Tsinghua University, China; Tzu-
Mao Li, tzli@ucsd.edu, University of California San Diego, USA.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 0730-0301/2024/7-ART123
https://doi.org/10.1145/3658218

ACM Reference Format:
Chuhao Chen, Yuze He, and Tzu-Mao Li. 2024. Temporally Stable Metropolis
Light Transport Denoising using Recurrent Transformer Blocks. ACM Trans.
Graph. 43, 4, Article 123 (July 2024), 14 pages. https://doi.org/10.1145/3658218

1 INTRODUCTION
Recent years have witnessed significant advancements in Monte
Carlo Denoising methods, with the majority of efforts concentrated
on denoising Monte Carlo Path Tracing (PT) renderings. Metropo-
lis Light Transport (MLT) [Veach and Guibas 1997], however, has
received less attention. Although proficient in rendering intricate
light paths such as caustics or complex visibility, MLT suffers from
correlation artifacts and flickering noise in video or animation ren-
dering. The correlated samples from the Metropolis sampling make
MLT incompatible with existing adaptive sampling and reconstruc-
tion methods for animation denoising [Mehta et al. 2012; Wu et al.
2017; Yan et al. 2015]. The difficulty in estimating MLT’s variance
[Ashikhmin et al. 2001] also makes it challenging to apply variance-
guided spatiotemporal denoising approaches [Schied et al. 2017].
The emergence of deep learning offers the potential to denoise

MLT renderings through neural networks. While these methods
have successfully denoised PT renderings, their application to MLT
remains limited. Interactive denoising approaches [Chaitanya et al.
2017; Fan et al. 2021; Hasselgren et al. 2020; Meng et al. 2020] pri-
oritize temporal stability but are constrained by the scale of their

ACM Trans. Graph., Vol. 43, No. 4, Article 123. Publication date: July 2024.

HTTPS://ORCID.ORG/0009-0004-4544-9378
HTTPS://ORCID.ORG/0009-0005-1575-6112
HTTPS://ORCID.ORG/0000-0001-5443-470X
https://orcid.org/0009-0004-4544-9378
https://orcid.org/0009-0005-1575-6112
https://orcid.org/0000-0001-5443-470X
https://orcid.org/0000-0001-5443-470X
https://doi.org/10.1145/3658218
https://doi.org/10.1145/3658218

123:2 • Chuhao Chen, Yuze He, and Tzu-Mao Li

neural networks for real-time denoising. Meanwhile, offline denois-
ers for single image denoising [Bako et al. 2017; Gharbi et al. 2019;
Yu et al. 2021] employ larger neural networks to achieve higher
quality reconstructions but often overlook the temporal stability
necessary for MLT renderings. Balint et al. [2023] proposed a se-
quence denoiser with a large-scale network, which is the closest to
meeting our needs. However, its CNN architecture and temporal
accumulation techniques are still limited in MLT denoising.

In this paper, we introduce a novel learning-based denoiser adept
at handling MLT renderings characterized by complex light paths
while maintaining temporal stability. Distinguished from the previ-
ous offline multi-scale temporal kernel-predicting denoiser [Balint
et al. 2023; Vogels et al. 2018], our denoiser is not based on tempo-
ral sliding windows or per-pixel input blending but operates as a
recurrent model, enabling a more in-depth feature temporal accu-
mulation. We also integrate the latest efficient vision transformer
blocks [Zamir et al. 2022] in our model to enhance the model’s per-
ceptive field. Inspired by sample-based denoising methods [Gharbi
et al. 2019; Zimmer et al. 2015], we propose a sample decomposition
technique specific to MLT. To evaluate our method and compare it
with other models in terms of MLT denoising, we construct a dataset
with challenging scenes based on the OpenRooms framework [Li
et al. 2021] to serve as a benchmark.

Our experiment’s results validate our denoiser’s efficacy in main-
taining temporal stability and achieving superior reconstruction
quality compared to existing denoisers for MLT renderings. Our
contributions can be summarized by the following:

• A sample decomposition technique aims at removing flicker-
ing artifacts in MLT animation.

• A sophisticated denoiser with recurrent transformer blocks
capable of high-quality denoising of MLT renderings while
ensuring temporal stability.

• A new dataset with a large number of challenge scenes for
evaluating MLT denoising.

2 RELATED WORK

2.1 Metropolis Light Transport
In rendering, we are interested in computing a path integral for each
pixel 𝑗 , that integrates over all the light paths x̄ that pass through
the pixel [Veach 1998]:

𝐼 𝑗 =

∫
Ω
ℎ 𝑗 (x̄) 𝑓 (x̄)dx̄, (1)

where Ω is the path space, ℎ 𝑗 is the pixel filter, 𝑓 is the measurement
contribution function. When the scene contains difficult visibility
or complex materials, only a small subset of the light paths x̄ will
have high contribution 𝑓 . This makes standard sampling inefficient
since most light paths do not contribute significantly to the image.
Metropolis light transport (MLT) [Veach and Guibas 1997] ren-

ders difficult scenes with sparse contributions by reusing previously
sampled high contribution light paths, using a Markov Chain Monte
Carlo sampling method. MLT computes the path integrals for all
pixels by generating a sequence of samples x̄𝑖 . To generate a new
sample in the sequence, MLT first generates a proposal by mutating
the latest sample in the chain, usually by perturbing the light path

or reusing part of it and regenerating the rest. It then probabilisti-
cally accepts or rejects the proposal based on a target function 𝑓 ∗ –
usually the luminance of the measurement contribution function.
The mutation and probabilistic acceptance enable the reuse of rare,
high contribution light paths, and ensure that the distribution of
the samples x̄𝑖 would converge to a target distribution proportional
to the target function 𝑓 ∗.

Given the samples, the path integrals are estimated as:〈
𝐼 𝑗
〉
=
𝑏

𝑁

𝑁∑︁
𝑖=1

ℎ 𝑗 (x̄𝑖) 𝑓 (x̄𝑖)
𝑓 ∗ (x̄𝑖)

, (2)

where 𝑏 is an estimation of the average of 𝑓 ∗ over the whole image.
While theoretical analysis has been conducted for the variance

of MLT [Ashikhmin et al. 2001], it remains challenging to estimate
per-pixel variance, since the Markov chain samples x̄𝑖 are corre-
lated to each other due to the path mutation. MLT-rendered images
are difficult to denoise using classical methods [Schied et al. 2017;
Zwicker et al. 2015] that assume pixels are uncorrelated to each
other and assume access to variance estimation for each pixel.
The quality of MLT rendering is highly dependent on the mu-

tation strategies used to perturb the samples. Most of the MLT
research focuses on improving the sampling efficiency by incor-
porating different mutation strategies, e.g., [Bashford-Rogers et al.
2021; Hachisuka et al. 2014; Jakob and Marschner 2012; Kelemen
et al. 2002; Kitaoka et al. 2009; Luan et al. 2020] or improving sam-
ple stratification, e.g., [Bitterli and Jarosz 2019; Cline et al. 2005;
Gruson et al. 2020; Zirr and Dachsbacher 2020]. Temporal muta-
tion strategies [Lai et al. 2009; Van de Woestijne et al. 2017] have
been proposed for rendering animation with MLT and improving
temporal coherency. Our denoiser is, in principle, agnostic to the
type of MLT variants used, but it may need to be retrained to learn
the noise pattern of the specific MLT algorithm. In this paper, we
focus on path-space MLT [Veach and Guibas 1997] to showcase the
capability of our denoiser to handle highly-correlated samples.

2.2 Learning-Based Monte Carlo Denoising
Modern Monte Carlo rendering denoising often relies on deep learn-
ing. Offline denoising methods often target denoising for a single
frame [Bako et al. 2017; Gharbi et al. 2019; Kalantari et al. 2015; Yu
et al. 2021] and do not aim to improve temporal coherency.

Vogels et al. [2018] extends the kernel-predicting network [Bako
et al. 2017] to denoise temporal sequences by taking multiple frames
as input for each frame. Our architecture instead operates as a
recurrent model to model a larger sequence.
Interactive and real-time denoisers [Chaitanya et al. 2017; Fan

et al. 2021; Hasselgren et al. 2020; Meng et al. 2020; Thomas et al.
2022; Xiao et al. 2020] do model temporal coherency, but operate
under limited computational budget and often have limited capacity
for denoising challenging inputs produced by MLT. Balint et al.
[2023] extends those interactive denoisers to an offline version, but
it only increases the scale of the network while our method focuses
on putting computational budget into temporal accumulation.

Most Monte Carlo rendering denoisers are based on some variants
of convolutional neural networks. We instead combine our recur-
rent transformer network with the kernel-predicting architecture

ACM Trans. Graph., Vol. 43, No. 4, Article 123. Publication date: July 2024.

Temporally Stable Metropolis Light Transport Denoising using Recurrent Transformer Blocks • 123:3

𝓓

𝓓

𝓓

Apply
Kernels

Pyramid
Composition

1/2x Downscale

1/4x Downscale

1/8x Downscale

Noisy Radiance

Network Output

Denoised
Output

Pyramid
Composition

Pyramid
Composition

Apply
Kernels

Apply
Kernels

Apply
Kernels

Temporal
Kernels

Upsample

Decoding
Blocks

Decoding
Blocks

Decoding
Blocks

Decoding
Blocks

Bottleneck

Encoding
Blocks

Encoding
Blocks

Encoding
Blocks

Embedding
Block

Skip Connection

Downsample

Recurrent
Branch

Input Features

Decomposed MLT Rendering

Auxiliary Buffers

Normalization

Fig. 2. Our network architecture. The input to our network consists of images produced by different mutation strategies (Fig. 3 and Section 3.1) and the
auxiliary buffers (shading normals, world positions, reflectance). We apply a U-Net-like architecture to process the inputs. The recurrent branches store hidden
states that retain temporal information (Fig. 5 and Section 3.2). The decoding blocks output filtering kernels that we apply in a multi-scale manner [Vogels
et al. 2018] to produce the final image (Fig. 7 and Section 3.3).

that has shown exceptional denoising capability for Monte Carlo
renderings [Bako et al. 2017; Fan et al. 2021; Gharbi et al. 2019].
While most Monte Carlo denoising methods focus on spatially

uncorrelated noise, Back et al. [2020, 2023] have proposed to jointly
denoise a pair of uncorrelated and correlated rendered images. In
this work, we focus on the case where we have a correlated rendered
image sequence as input and aim to achieve temporal coherence.
Combining our architecture with Back et al.’s approach would be
an exciting future work.

2.3 Modern Denoiser Based on Transformer
Deep learning has witnessed a paradigm shift with the advent of
the Transformer architecture [Vaswani et al. 2017]. Abandoning
the recurrent layers in classical models, Transformers employ self-
attention mechanisms to weigh input features dynamically, provid-
ing themwith a powerful capacity for handling sequences. Riding on
the success of the Transformer in language processing, the concept
was adapted for computer vision tasks through the Vision Trans-
former (ViT) initially, and followed by other variants like the Swin
Transformer [Liu et al. 2021] and DeiT [Touvron et al. 2021].

The advancements in Transformer architectures, combined with
the foundational models mentioned, have given rise to numerous
transformer-based image denoising networks, notably Restormer
[Zamir et al. 2022], Uformer [Wang et al. 2022], and SwinIR [Liang
et al. 2021], among others. Video denoising methods have also
emerged, such as VRT [Liang et al. 2022a] and RVRT [Liang et al.
2022b], which leverage temporal data. However, there are limited
transformer-based solutions specifically tailored for Monte Carlo
denoising, with AFGSA [Yu et al. 2021] being a notable exception.
This scarcity can be attributed to the substantial number of parame-
ters transformer architectures require, making real-time rendering
challenging. Additionally, training these architectures demands ex-
tensive datasets, which are not always available for Monte Carlo
denoising tasks. Regardless of these challenges, we believe that a
transformer-based denoiser is essential for complex MLT denoising
tasks, where our focus is on optimizing denoising quality rather
than real-time performance.

MLT / 64spp Bidirectional mutation Lens perturbation

Multi-chain perturbationReference Caustic perturbation

Fig. 3. Sample Decomposition.We decompose an MLT rendering into
different contributions coming from different mutation strategies and de-
noise them separately. Here we visualize the contributions from the four
mutation strategies of path-space MLT [Veach and Guibas 1997]. Different
mutation strategies exhibit different noise patterns for different scenes, and
hence would benefit from different denoising strategies.

3 MLT DENOISING WITH RECURRENT TRANSFORMER
BLOCKS

We introduce a neural network specifically tailored for denoising
in the context of MLT (Metropolis Light Transport) rendering. As
shown in Fig. 2, our architecture adopts a U-Net-like [Ronneberger
et al. 2015] structure, containing a series of carefully designed multi-
layer recurrent encoding and decoding blocks, aimed at maximizing
the use of continuity priors across frames and various scales, thus ef-
fectively mitigating noise generated by the MLT algorithm (detailed
architecture is further elaborated in Appendix A). Additionally, in
response to the broad range and complex patterns of MLT noise
characteristics, we design a sample decomposition step for the input
data and a hierarchical kernel application scheme.

3.1 Sample Decomposition for MLT
Inspired by sample-based methods for PT denoising [Balint et al.
2023; Gharbi et al. 2019; Hasselgren et al. 2020; Işık et al. 2021;
Zimmer et al. 2015], we decompose MLT radiance by light path
contributions from different mutation and perturbation strategies.

ACM Trans. Graph., Vol. 43, No. 4, Article 123. Publication date: July 2024.

123:4 • Chuhao Chen, Yuze He, and Tzu-Mao Li

(a)

Reference

Multi-chain Comp. Lens Comp.

Input Crop Reference Crop Input Crop

Output (w/o Decomp.) Output

Input

(b) (c)

Multi-chain Comp. Crop Lens Comp. Crop

Kernel (w/o Decomp.) Kernel (Multi-chain Comp.) Kernel (Lens Comp.)

Fig. 4. An example showing the effectiveness of sample decomposition. (a) shows an example in which the multi-chain perturbations produce several
slender artifacts. (b) shows a small crop that contains one of the artifacts, and our denoiser with sample decomposition performs better in removing such
artifacts than the ablation without sample decomposition. (c) shows the predicted kernels of the center pixel. We can see the single kernel from the ablation is
not able to diminish the artifact, while the kernel of the multi-chain perturbation component learned such noise pattern, and cooperated with the kernel of
the lens perturbation component to reconstruct a better output.

We use the original path-space MLT algorithm proposed by Veach
and Guibas [1997] and use the default mutation and perturbation
strategies implemented in Mitsuba [Jakob 2010], including bidirec-
tional mutation, lens perturbation, caustic perturbation and multi-
chain perturbation. The MLT renderer is responsible for generating
both direct and indirect illumination. Different mutation strategies
yield varying outcomes with respect to different light rays and ac-
ceptance rates, consequently leading to distinct variances. This, in
turn, results in varying degrees of noise and radiance across differ-
ent materials. Decoupling the rendering results of various mutations
and perturbations can be beneficial in preserving more details.

As shown in Fig. 3, in this particular scene lit by a single spotlight,
the rendering of lens perturbation shows low noise level and large
radiance, since in this case it mainly focuses on the direct lighting
components that are either directly visible or through specular
interactions. Caustic and multi-chain perturbation both have high
noise levels for this scene. The former is caused by the perturbation
from the spot light, while the latter results from having to deal
with intricate caustic patterns. Bidirectional mutation regenerates
subpaths from scratch and hence has a low acceptance rate.
To depict the effectiveness of separate denoising kernels on de-

composed renderings, Fig. 4 shows an example of how independent
kernels from two components work together to remove artifacts. We
compose the independent denoised result at the last step and form
the final output. The results of our decomposing technique in an
overall improvement for MLT denoising are shown in Section 5.4.2.

3.2 Recurrent transformer blocks for temporal
accumulation

Most interactive Monte Carlo denoising methods apply the per-pixel
input blending for temporal accumulation. The aligned noisy ren-
derings are linearly blended among frames with a fixed or adaptive

weight. While this strategy is efficient and results in good temporal
stability in denoising path-traced renderings, it is not sufficient for
eliminating the correlated noise in MLT renderings.

To tackle this challenge, we propose a novel attention-based recur-
rent block to better leverage temporal information. The block con-
tains a self-attentionmodulewith a similar structure as Restormer [Za-
mir et al. 2022] to aggregate spatial and cross-channel context and
a cross-attention module with recurrent structure to recognize and
eliminate the noise using temporal continuity priors.
Fig. 5 shows the structure of one transformer block in our en-

coder.𝑋 (𝑡)
𝑖
, 𝐻

(𝑡)
𝑖

∈ R𝐻×𝑊 ×𝐶 denote the input feature and recurrent
hidden-state feature of 𝑖-th layer at frame 𝑡 , respectively. The query,
key, and value maps𝑄𝑠 , 𝐾𝑠 ,𝑉𝑠 of the self-attention layer are derived
from only the input features; for the cross-attention layer, the query
map 𝑄𝑐 comes from the input feature, while the key and value map
𝐾𝑐 ,𝑉𝑐 is obtained from the hidden state of the last frame:

𝑄𝑠 , 𝐾𝑠 ,𝑉𝑠 = E𝑞 (𝑋 (𝑡)
𝑖

), E𝑘 (𝑋
(𝑡)
𝑖

), E𝑣 (𝑋 (𝑡)
𝑖

)

𝑄𝑐 , 𝐾𝑐 ,𝑉𝑐 = E′
𝑞 (𝑋

(𝑡)
𝑖

), E′
𝑘
(W𝑡−1→𝑡 (𝐻 (𝑡−1)

𝑖
)),

E′
𝑣 (W𝑡−1→𝑡 (𝐻 (𝑡−1)

𝑖
)),

(3)

where E denotes the projection block containing a 1×1 convolution
layer followed by a 3× 3 depth-wise convolution layer,W is a warp
operator that warps the images using the primary motion vector
(see Section 4.3.2).

The channel attention module (Fig. 6) can be formulated as:

Attention(�̂�, �̂�,𝑉) = 𝑉 · Softmax(�̂� · �̂�/𝛼), (4)

where �̂�,𝑉 ∈ R𝐻𝑊 ×𝐶 and �̂� ∈ R𝐶×𝐻𝑊 are projection matrices
reshaped from𝑄 ,𝐾 and𝑉 , and 𝛼 is a learnable parameter for scaling.
The self-attention and cross-attention results are concatenated

along the channel axis and projected back to the original shape

ACM Trans. Graph., Vol. 43, No. 4, Article 123. Publication date: July 2024.

Temporally Stable Metropolis Light Transport Denoising using Recurrent Transformer Blocks • 123:5

Layer Norm

1x1 Conv
3x3 DConv

1x1 Conv
3x3 DConv

1x1 Conv
3x3 DConv

Self
Attention

Cross
Attention

‖

Feed-Forward Network

+

+

𝓦 Warp

Concatenate

1x1 Conv

Recurrent Branch
(only in the encoder)

Forward Path

Channel
Attention

Channel
Attention

Fig. 5. Recurrent transformer block. Forward paths and self-attention
modules are included in both encoding and decoding blocks, while recurrent
branches and cross-attention modules are only included in encoding blocks.

Channel
Attention Map

×

𝓡

𝓡

𝓡

× 𝓡

Reshape
𝓢

Scale & Softmax

Fig. 6. Channel attentionmodule. The bottleneck of the attentionmodule
is the matrix multiplication between the reshaped value matrix and the
attention map. For channel attention, the shapes are 𝐻𝑊 × 𝐶 and𝐶 × 𝐶

(𝐶 is the number of channels), resulting in the complexity of 𝑂 (𝐶2𝐻𝑊) ,
linear to resolution. For classical attention in ViT, the shapes are𝐶 × 𝐻𝑊

and𝐻𝑊 ×𝐻𝑊 , so the complexity is𝑂 ((𝐻𝑊)2𝐶) , quadratic to resolution.

using a 1 × 1 convolution. The Feed-Forward Network is imple-
mented using a Gated-Dconv Feed-Forward Network [Zamir et al.
2022], and we apply residual skip connections [He et al. 2016] both
before and after. The output 𝑋 (𝑡)

𝑖+1 is passed as an input to the next
encoding/decoding block and used as the hidden state for the next
processed frame, 𝐻 (𝑡)

𝑖
.

We use the same transformer blocks in our decoder, except we
remove the part for calculating cross-attention and only feed the
self-attention to the project convolution E.
The self-attention module primarily focuses on spatial and low-

level noise. In contrast, the cross-attention module accumulates
correct features and addresses inter-frame inconsistencies such as
correlated noise. By integrating these two modules, our system
can robustly denoise MLT rendered images. Moreover, the design
of channel attention achieves better efficiency while maintaining
spatial perception ability. Since the computation complexity of the
channel attention is linear to the input resolution, unlike classical
Vision Transformer which the complexity is quadratic (see Fig. 6),
we can afford to use these recurrent transformer blocks in denoising
large images to achieve better results. We show the advantage of
this transformer-based model with further studies in Section 5.4.3.

3.3 Hierarchical Kernel Application
Following previous Monte Carlo denoising methods [Bako et al.
2017; Fan et al. 2021; Gharbi et al. 2019; Vogels et al. 2018], our
decoding blocks predict normalized kernels to ensure there is no
color shift and enforce the conservation of energy. Similar to Vogels
et al. [2018], we adopt a hierarchical kernel application pipeline,
where multi-scale radiance is filtered and composed with kernels
and blending parameters predicted from the network. Fig. 7 shows
the kernel application process at layer 𝑙 (𝑙 = 0, 1, 2, 3), where 𝜅𝑙𝑢𝑣𝑥𝑦𝑡 ,
𝐾𝑙
𝑢𝑣𝑥𝑦𝑡 , 𝜆

𝑙
𝑥𝑦𝑡 and 𝛼𝑙𝑥𝑦𝑡 are all learnable parameters output from

the 𝑙-th decoding layer and 𝐿𝑙𝑥𝑦𝑡 , 𝐿
𝑙
𝑥𝑦𝑡 �̂�

𝑙
𝑥𝑦𝑡 are radiance buffer. The

single-layer kernel-application process can be formulated as

𝐿𝑙𝑥𝑦0 =
∑︁
𝑢𝑣

𝐾𝑙
𝑢𝑣𝑥𝑦0𝐿

𝑙
(𝑥+𝑢−𝑤/2) (𝑦+𝑣−ℎ/2)0,

𝐿𝑙𝑥𝑦𝑡 = (1 − 𝜆𝑥𝑦𝑡)
∑︁
𝑢𝑣

𝐾𝑙
𝑢𝑣𝑥𝑦𝑡𝐿

𝑙
(𝑥+𝑢−𝑤/2) (𝑦+𝑣−ℎ/2)𝑡

+ 𝜆𝑥𝑦𝑡
∑︁
𝑢𝑣

𝜅𝑙𝑢𝑣𝑥𝑦𝑡 (W𝑡−1→𝑡 (𝐿𝑙𝑡−1)) (𝑥+𝑢−𝑤/2) (𝑦+𝑣−ℎ/2) ,

(5)

where 𝑤,ℎ are the weight and height of the kernel, 𝐿𝑙𝑥𝑦𝑡 is the
downscaled input noisy radiance at the 𝑙-th layer and the frame 𝑡 ,
𝐾𝑙
𝑢𝑣𝑥𝑦𝑡 is a normalized kernel that gathers values from neighbor

pixels (𝑢, 𝑣) to the pixel (𝑥,𝑦), 𝜅𝑙𝑢𝑣𝑥𝑦𝑡 is another normalized kernel
(temporal kernel) that gathers values from previous output, 𝐿𝑙𝑥𝑦𝑡
and 𝐿𝑙

𝑥𝑦 (𝑡−1) are coarse denoised outputs from frame 𝑡 and frame

𝑡 − 1, 𝜆𝑙𝑥𝑦𝑡 is a blending parameter which is restricted to the range
(0, 1) by a sigmoid function, andW is the warp operator.
After obtaining all the coarse denoised outputs from each layer,

we employ a progressive scale-composition module from Vogels
et al. [2018]. This module progressively composes adjacent coarse
denoised outputs, ascending from the lowest resolution to the full
resolution, as expressed by the following equations:

�̂�0
𝑥𝑦𝑡 = 𝐿

0
𝑥𝑦𝑡

�̂�𝑙𝑥𝑦𝑡 = 𝐿
𝑙
𝑥𝑦𝑡 − U(𝛼𝑙𝑥𝑦𝑡)D(𝐿𝑙𝑥𝑦𝑡) + U(𝛼𝑙𝑥𝑦𝑡 �̂�𝑙−1

𝑥𝑦𝑡),
(6)

where 𝐿𝑙𝑥𝑦𝑡 is the coarse denoised output and �̂�𝑙𝑥𝑦𝑡 is the fine de-
noised output at layer 𝑙 composed from the fine denoised output

ACM Trans. Graph., Vol. 43, No. 4, Article 123. Publication date: July 2024.

123:6 • Chuhao Chen, Yuze He, and Tzu-Mao Li

Warp

𝓦
Network Output

Kernel Apply

Temporal
Kernel Apply

Coarse
Denoised

𝓒

Fine
Denoised

ComposeLinear BlendNoisy
Radiance

𝓑

Fig. 7. Kernel Application module. The module first takes in noisy and
denoised images from the current and previous frames. It warps the previous
frame using motion vectors to align the two frames. It then applies a spatial-
temporal filter to the images with weights generated by the decoding blocks,
and composes the images at different scales.

�̂�𝑙−1
𝑥𝑦𝑡 at layer 𝑙 − 1. 𝛼𝑙𝑥𝑦𝑡 is a blending parameter that is also re-
stricted to the range (0, 1) by a sigmoid function. D and U is the
downsampling operator and the nearest-neighbor upsampling oper-
ator [Vogels et al. 2018].

At last, we compose the final denoised output from 4 decomposed
denoised components at layer 3 (full resolution).

𝑂𝑥𝑦𝑡 =

4∑︁
𝑘=1

�̂�3
𝑥𝑦𝑡𝑘

. (7)

3.4 Why recurrent blocks are necessary for MLT denoising
While the recurrent method in Monte Carlo denoising has been
explored by Chaitanya et al. [2017], this approach has not been
widely adopted in subsequent research. Instead, per-pixel input
blending for temporal accumulation is favored for PT denoising due
to its efficiency [Balint et al. 2023; Fan et al. 2021; Işık et al. 2021;
Koskela et al. 2019]. Constant weights for per-pixel input blending
efficiently accumulate samples over time, but are affected by invalid
samples caused by view-dependent effects. Using adaptive weights
learned from the neural network can eliminate invalid samples to
a certain extent, but they also struggle with complex scenes with
more invalid samples. In light of these challenges, we revisited the
recurrent method that preserves in-depth temporal information
within different levels of network layers, which shows promise for
MLT denoising. In Fig. 8, we demonstrate the limitations of per-pixel
input blending in denoising MLT and bidirectional path tracing in
complex scenes, such as those involving complex glass objects.

4 DATASET AND IMPLEMENTATION DETAILS

4.1 Dataset
MLT is adept at rendering scenes with challenging visibility and
intricate caustics. We constructed such scenes using the OpenRooms
framework [Li et al. 2021] and served as our dataset. Our dataset com-
prises 124 different scenes with 6300 animated sequences wherein
the camera moves through the static scene. We also add moving spot
lights into the scene to create moving caustics. Each sequence is ren-
dered at a resolution of 640× 480 pixels. We adopted the path-space
MLT to render all the scenes withMitsuba v0.6 renderer [Jakob 2010].

We introduced our method to modify the original OpenRooms and
generate scenes specialized for MLT in Appendix B.
We divide the 124 scenes into 114 training scenes and 10 test

scenes. All the 7-frame training sequences are from training scenes,
with varying input sample counts from 32 to 128 samples per pixel.
For testing, we built a dataset comprising two 60-frame sequences
with 16spp/32spp/64spp/128spp input from each test scene. A val-
idation dataset is used to monitor the training progression. The
validation dataset consists of 50 sequences, each 7 frames in length,
all sourced from the test scenes.

4.2 Loss Function
Our denoiser is optimized to deliver renderings that are both of high
quality and temporally stable. Thus, we minimize a combination of
the single image loss and the temporal loss as defined below:

L = L𝑠𝑖𝑛𝑔𝑙𝑒 + 𝜆L𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 , (8)

where we set 𝜆 = 0.5 and
L𝑠𝑖𝑛𝑔𝑙𝑒 = SMAPE(𝐼output, 𝐼gt)

L𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = SMAPE(𝜕𝑡 𝐼output, 𝜕𝑡 𝐼gt) .
(9)

The Symmetric Mean Absolute Percentage Error (SMAPE) [Vogels
et al. 2018] for two temporal sequences 𝐴 and 𝐵 is defined as:

SMAPE(𝐴, 𝐵) = 1
3
E𝑥𝑦𝑡

| |𝐴𝑥𝑦𝑡 − 𝐵𝑥𝑦𝑡 | |1
| |𝐴𝑥𝑦𝑡 | |1 + ||𝐵𝑥𝑦𝑡 | |1 + 𝜖

, (10)

where 𝜖 = 10−2 is added to prevent singularities. The expectation
E𝑥𝑦𝑡 is computed over both pixels and frames and | | · | |1 represents
𝐿1 norm. The factor of 3 accounts for the three color channels.

4.3 Implementation Details
4.3.1 Training settings. We implemented our denoiser in PyTorch
[Paszke et al. 2019] and optimized the models using the Adam op-
timizer [Kingma and Ba 2015] with the default parameters. Our
denoiser is trained for 50 epochs on our train dataset, comprising
roughly 160k iterations, which takes about 4 days for an NVIDIA-
A100-SXM4-80GB GPU. We apply a mini-batch of 2 and an initial
learning rate of 10−4. We multiply the learning rate by 0.8 every
20 epochs. In the training process, we apply the data augmenta-
tion with random rotations, horizontal and vertical flips, and crops
measuring 256 × 256 pixels.

4.3.2 Motion Vectors and Warping. We extract primary motion vec-
tors [Zimmer et al. 2015] by ground-truth poses and depths, followed
by a forward-backward consistency check for masking out invisible
positions. We use the primary motion vectors to warp feature maps
in recurrent transformer blocks (Section 3.2) and hierarchical kernel
application (Section 3.3) at different resolutions.
For the scaled warping, we make a full-resolution grid with our

motion vectors, where the vectors are normalized with respect to the
resolution. We then warp the low-resolution features with bilinear
resampling and downsample the output to the original size.

4.3.3 Auxiliary Buffers. We use four kinds of auxiliary buffers:
albedo, distance, shading normals, and world positions. All of them
are directly generated from the Mitsuba renderer. While we employ

ACM Trans. Graph., Vol. 43, No. 4, Article 123. Publication date: July 2024.

Temporally Stable Metropolis Light Transport Denoising using Recurrent Transformer Blocks • 123:7

Large Error

Small Error

Error Increase

Error Decrease

MLT Constant WeightBDPT InputMLT Input BDPT Constant Weight MLT Adaptive Weight BDPT Adaptive Weight

(c)(a) (b)

Fig. 8. Evaluation of constant weight linear blending and adaptive weight linear blending. (a) shows the noisy MLT and Bidirectional Path Tracing
(BDPT) radiance and absolute errors against the reference, in which BDPT shows a more uniform error. (b) and (c) shows how the error varies after applying a
constant or adaptive weight blending. We can see the constant weight blending performs much better on BDPT than MLT. The adaptive weight blending
shows a very minor change of input for both MLT and BDPT, which proves its inefficiency in a scene full of view-dependent effects.

primary motion vectors for warping, they are excluded from direct
input buffers since we did not find them to be helpful.

4.3.4 Input Normalization. We normalize all the input features with
the same strategy as Işık et al. [2021], in which the input radiance
components are tone-mapped with 𝑥 ↦→ log(1 + 𝑥) first and then
normalized to [−1, 1]. The albedo buffer, distance buffer and position
buffer are also normalized to the same range.

5 RESULTS

5.1 Metrics
To evaluate the denoising quality of a single frame, we employ the
peak signal-to-noise ratio (PSNR) and the structural similarity index
measure (SSIM) on the tone-mapped radiance. We follow the sRGB
standard to tone map the radiance:

𝜏𝑟 (𝑥) =
{

12.92𝑥, 𝑥 ≤ 0.0031308
min(1, 1.055𝑥

1
2.4 − 0.55), 𝑥 > 0.0031308.

(11)

For evaluating temporal stability, previous works have applied Tem-
poral Relative Mean Absolute Error (TRMAE) [Işık et al. 2021] and
Temporal PSNR (TPSNR) [Balint et al. 2023; Hasselgren et al. 2020].
However, we found these metrics based on the temporal finite dif-
ferences do not adequately capture the inherent temporal instability
of MLT. This instability, resulting from the pronounced local corre-
lation in MLT renderings, is perceptible to the human perspective.
We found that the well-established perceptual-informed metrics
FovVideoVDP [Mantiuk et al. 2021] can perceive such temporal in-
stability well. Therefore, we only use this metric to evaluate the tem-
poral stability of the denoised animations. We use FovVideoVDP’s
standard HDR model to measure the video quality in the original
radiance domain. A detailed study on different metrics’ ability to
measure temporal stability can be found in Appendix C.

5.2 Comparision of Different Denoising Methods
Given the challenge of estimating radiance variance with MLT, most
of the traditional denoising methods are unsuitable for MLT render-
ings. Thus, we compare our approach only with deep learning-based
methods. We compared our model with 5 baseline models in total,
including RAE [Chaitanya et al. 2017], NTASD [Hasselgren et al.
2020], KPCN [Bako et al. 2017], AFGSA [Yu et al. 2021], and IDANF
[Işık et al. 2021]. We train all the baseline models on our dataset
and adapt them to be suitable for denoising MLT animations, which
makes our comparison as fair as possible. For NTASD, we do not ap-
ply adaptive sampling since it is incompatible with MLT. For IDANF,
we extract the per-pixel embeddings directly instead of extracting
per-sample embeddings at first. For the two offline single-image de-
noisers KPCN and AFGSA, we adapt them to sequence denoisers by
applying the learnable adaptive weight input blending [Balint et al.
2023; Işık et al. 2021]. We found that the original AFGSA model that
outputs per-pixel residuals between the noisy and reconstructed
images is difficult to train in our task, so we changed the output to
9 × 9 kernels. In addition, we found that the input normalization
and loss function we use for our model benefits the two offline
single-image denoisers, so we also apply them.
We conduct a comprehensive quantitative evaluation on our 20

test sequences and show the result in Table 1. We also test all the
methods on the classic Veach-Ajar scene [Bitterli 2016] as well as
two elaborate scenes Monkey [Ebke 2021] and Crystal to evaluate
the generalizing ability. The comparative results are provided in
Fig. 9. We also visualize a corresponding 6-frame denoised sequence
for our method in Fig. 10.

5.3 Generalization to unseen samples
While our network is trained on images with 32-128 samples per
pixel, it generalizes to sample counts outside this range. We ren-
dered additional noisy images for all the test sequences from 1spp to
1024spp to assess how our model can generalize to denoising scenes

ACM Trans. Graph., Vol. 43, No. 4, Article 123. Publication date: July 2024.

123:8 • Chuhao Chen, Yuze He, and Tzu-Mao Li

Table 1. Quantitative evaluation for all the models. We compute the average metric values across 20 60-frame test animations. We highlight the first

and second best result for each metric and each sample count. Our model consistently outperforms all the compared models across all sample count levels.

MLT Input Ours RAE NTASD KPCN AFGSA IDANF

16spp
PSNR↑ 21.54 28.55 25.58 26.31 25.80 26.27 26.67
SSIM ↑ 0.381 0.856 0.770 0.756 0.817 0.811 0.818

FoVVDP ↑ 6.602 7.916 7.612 7.510 7.470 7.472 7.553

32spp
PSNR↑ 22.78 29.21 26.05 27.13 26.15 26.80 27.07
SSIM ↑ 0.480 0.866 0.786 0.786 0.828 0.829 0.831

FoVVDP ↑ 6.840 8.081 7.758 7.687 7.595 7.635 7.694

64spp
PSNR↑ 23.82 29.60 26.41 27.78 26.39 27.14 27.35
SSIM ↑ 0.579 0.874 0.797 0.810 0.837 0.843 0.841

FoVVDP ↑ 7.059 8.194 7.878 7.833 7.677 7.758 7.800

128spp
PSNR↑ 24.74 29.99 26.73 28.34 26.64 27.47 27.63
SSIM ↑ 0.667 0.882 0.805 0.829 0.844 0.854 0.849

FoVVDP ↑ 7.250 8.289 7.993 7.953 7.762 7.870 7.912

Ours Input RAE NTASD KPCN AFGSA IDANF Ours Reference

32spp

128spp

128spp

Fig. 9. Qualitative comparison between our method and previous methods. For each scene, all the denoisers are applied to the whole animation
sequence and we take one frame from it for comparison. Our method outperforms all the previous methods in removing incorrect flickering artifacts as well as
keeping correct details.

ACM Trans. Graph., Vol. 43, No. 4, Article 123. Publication date: July 2024.

Temporally Stable Metropolis Light Transport Denoising using Recurrent Transformer Blocks • 123:9

Fig. 10. Evaluation of denoising whole sequences. We show the 6-frame noisy and denoised sequences of the crops in Fig. 9. Our method tends to keep
image details as much as possible while maintaining temporal stability.

Table 2. Quantitative evaluation for different temporal accumulation
techniques. Better temporal accumulation leads to an overall improvement
both in denoising quality and temporal stability. Herewe ablate our temporal
accumulation strategy using SR (simple recurrent), AB (adaptive blending),
CB (constant blending), and NB (no blending).

Ours SR AB CB NB

16spp
PSNR↑ 28.55 28.39 28.32 27.29 26.21
SSIM ↑ 0.856 0.855 0.845 0.829 0.829

FoVVDP ↑ 7.916 7.894 7.877 7.621 7.447

32spp
PSNR↑ 29.21 29.01 28.83 27.71 26.87
SSIM ↑ 0.866 0.865 0.856 0.838 0.840

FoVVDP ↑ 8.081 8.063 8.010 7.748 7.589

64spp
PSNR↑ 29.60 29.46 29.20 27.94 27.36
SSIM ↑ 0.874 0.874 0.865 0.846 0.851

FoVVDP ↑ 8.194 8.164 8.126 7.822 7.703

128spp
PSNR↑ 29.99 29.95 29.54 27.97 27.75
SSIM ↑ 0.882 0.883 0.873 0.851 0.860

FoVVDP ↑ 8.289 8.279 8.230 7.863 7.810

with unseen samples. We compared our results against all the base-
line models in Fig. 11. Our model maintains the best results on all
the sample counts, demonstrating adequate ability to denoise both
extremely noisy MLT renderings and high-quality MLT renderings.

5.4 Ablation Study
5.4.1 Temporal accumulation. We implemented four ablations to
evaluate our recurrent method’s ability for temporal accumulation.
The ablation SR (simple recurrent) removes the cross-attention mod-
ules, where the warped hidden states are concatenated with the
outputs from self-attention modules directly. The ablation AB (adap-
tive blending) applies the strategy that accumulates input radiance
with per-pixel learnable adaptive weights [Balint et al. 2023; Işık et al.
2021]. CB (constant blending) applies the strategy that accumulates
input radiance with constant weight [Fan et al. 2021; Koskela et al.
2019]. NB (no blending) does not accumulate input radiance. All the
ablations keep the temporal kernels and use the same encoding and
decoding blocks. Table 2 shows our quantitative evaluation results
on the same test set used in Section 5.2. The result suggests that
using recurrent branches has a great advantage over all input blend-
ing methods. It also shows the effectiveness of the cross-attention
module, which is more obvious in the cases of denoising low-sample
renderings.

5.4.2 Kernel Application. We study how different kernel-application
strategies affect the MLT denoising results. Table 3 shows our
quantitative evaluation results on the same test set used in Sec-
tion 5.2, where we list the temporal and output kernel size for all
the ablations. We also list the average output entries including
𝜅𝑙𝑢𝑣𝑥𝑦𝑡 , 𝐾

𝑙
𝑢𝑣𝑥𝑦𝑡 , 𝜆

𝑙
𝑥𝑦𝑡 , 𝛼

𝑙
𝑥𝑦𝑡 at each layer. We take our full model as a

standard, with 4 times output entries for separately denoising 4 MLT

ACM Trans. Graph., Vol. 43, No. 4, Article 123. Publication date: July 2024.

123:10 • Chuhao Chen, Yuze He, and Tzu-Mao Li

Table 3. Quantitative evaluation for different kernel settings. We highlight the first and second best result for each metric and each sample count.
(*) means the number is an equivalent average for the ablation that does not apply hierarchical denoising.

Temporal Kernel Size 5 × 5 (x4) - - 5 × 5 5 × 5 5 × 5 9 × 9
Output Kernel Size 9 × 9 (x4) - 9 × 9 9 × 9 9 × 9 13 × 13 17 × 17

Layer Output Entries 432(Ours) 1 82 27.6* 108 194 444

16spp
PSNR↑ 28.55 24.75 28.44 28.32 28.44 28.48 28.63
SSIM ↑ 0.856 0.814 0.840 0.850 0.853 0.853 0.856

FoVVDP ↑ 7.916 7.467 7.900 7.855 7.868 7.878 7.925

32spp
PSNR↑ 29.21 24.87 29.13 28.95 29.10 29.12 29.18
SSIM ↑ 0.866 0.817 0.852 0.863 0.864 0.863 0.865

FoVVDP ↑ 8.081 7.567 8.075 8.031 8.055 8.055 8.090

64spp
PSNR↑ 29.60 25.05 29.63 29.32 29.52 29.49 29.49
SSIM ↑ 0.874 0.820 0.863 0.873 0.873 0.870 0.872

FoVVDP ↑ 8.194 7.651 8.194 8.132 8.166 8.169 8.202

128spp
PSNR↑ 29.99 25.09 30.10 29.65 29.89 29.84 29.83
SSIM ↑ 0.882 0.820 0.872 0.881 0.881 0.877 0.880

FoVVDP ↑ 8.289 7.709 8.331 8.243 8.282 8.276 8.301

Table 4. Quantitative evaluation for different feature extractors. Our
transformer model is about two times slower than the ConvNext ablation
on an NVIDIA-A100-SXM4-80GB, but has higher denoising quality overall.

Ours ConvNext

Time (s/frame) 0.180 0.094
GPU Memory 7860MiB 7708MiB

Number of Parameters 20M 28M

16spp
PSNR↑ 28.55 28.17
SSIM ↑ 0.856 0.850

FoVVDP ↑ 7.916 7.876

32spp
PSNR↑ 29.21 28.79
SSIM ↑ 0.866 0.860

FoVVDP ↑ 8.081 8.025

64spp
PSNR↑ 29.60 29.12
SSIM ↑ 0.874 0.869

FoVVDP ↑ 8.194 8.125

128spp
PSNR↑ 29.99 29.49
SSIM ↑ 0.882 0.877

FoVVDP ↑ 8.289 8.230

components. We do not apply sample decomposition for all abla-
tions. The first ablation does not predict kernels and reconstruct the
output directly. The second ablation does not apply temporal kernels.
The third ablation does not apply hierarchical denoising and only
applies kernels on the full resolution. The fourth to sixth ablations
follow the same pipeline as the standard except for not applying
sample decomposition and using different kernel sizes. The result

shows that quantitative differences among different kernel settings
are not so significant except that kernel-predicting is necessary. Our
full model demonstrates an overall improvement over the ablation
with the same kernel size and without sample decomposition. The
enhancement is comparable to that of increasing the kernel size
to the same scale of output entries. Considering that continually
increasing the kernel size does not result in sustained improvement,
our full model is expected to be the most effective when using the
optimized kernel size.

5.4.3 Transformer vs. CNN. We compare our model with a CNN
ablation to show the advantage of the transformer-based model in
our task. For this ablation, we replace the encoding and decoding
transformer blocks with large-scale convolutional blocks from Con-
vNext [Liu et al. 2022], which are also used by Balint et al. [2023].
We use simple recurrent branches from Chaitanya et al. [2017],
adding the warp operation. The ablation is about the same scale as
our model at the same number of blocks in terms of GPU memory
usage. We evaluate both the metrics and inference time. Table 4
suggests that replacing CNNs with Transformers trades between
denoising quality and computation cost. It is worth using the slower
Transformer since the denoising time is negligible compared to the
rendering time for complex scenes.

5.5 Denoising renderings for other MCMC algorithms
In this paper, we focus on path-space MLT to demonstrate that our
denoiser can handle highly-correlated samples. However, both the
techniques of sample decomposition and recurrent network in our
method can be applied in other MCMC algorithms. To show the
applicability, we train an extra model for Primary Sample Space
Metropolis Light Transport (PSSMLT) [Kelemen et al. 2002]. We
decompose the PSSMLT rendering into 2 different components,

ACM Trans. Graph., Vol. 43, No. 4, Article 123. Publication date: July 2024.

Temporally Stable Metropolis Light Transport Denoising using Recurrent Transformer Blocks • 123:11

20 21 22 23 24 25 26 27 28 29 210

Samples Per Pixel

22

24

26

28

30

PS
NR

PSNR at different sample counts

RAE
NTASD
KPCN

AFGSA
IDANF
Ours

20 21 22 23 24 25 26 27 28 29 210

Samples Per Pixel

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

SS
IM

SSIM at different sample counts

RAE
NTASD
KPCN

AFGSA
IDANF
Ours

20 21 22 23 24 25 26 27 28 29 210

Samples Per Pixel

6.5

7.0

7.5

8.0

8.5

Fo
VV

DP

FoVVDP at different sample counts

RAE
NTASD
KPCN

AFGSA
IDANF
Ours

Fig. 11. Generalization to unseen samples. Our denoiser can consistently
improve the quality and temporal stability of MLT animations rendered by
different sample counts. The filled regions are sample counts unseen in the
training set.

one containing samples from large-step mutations and the other
containing samples from small-step mutations. Fig. 12 shows one
denoised example, in which we use a smaller sample count than
that in path-space MLT since noises in PSSMLT renderings are less
correlated. Our denoiser can also handle this case well.

5.6 Limitations
As discussed in Section 5.4.3, the time taken for inference does not
pose significant challenges in our task. However, the substantial
GPU memory requirements of our large-scale transformer-based
model could be a bottleneck. Therefore, denoising high-resolution
animations might be challenging on some existing GPUs.

8spp

Ours

Fig. 12. Denoising PSSMLT renderings. The result shows that our
method can be generalized to denoising PSSMLT renderings. The denoiser
handles different noise patterns well.

6 CONCLUSION
We have presented our novel denoiser with recurrent transformer
blocks for Metropolis Light Transport. Through detailed experi-
ments comparing several learning-based models, we have demon-
strated that modern learning-based methods are capable of effec-
tively denoising renderings from MLT algorithms while enhanc-
ing temporal stability. Compared to existing methods, our model
achieves state-of-the-art performance in both denoising quality and
temporal stability. We have also introduced a new large-scale dataset
of indoor scenes with complex light paths for benchmarking MLT
denoising. We believe our method has shown a step towards making
Metropolis light transport practical for animation rendering.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their invaluable feedback.
This work was supported in part by NSF grant 2105806 and gifts
from Adobe and Google.

ACM Trans. Graph., Vol. 43, No. 4, Article 123. Publication date: July 2024.

123:12 • Chuhao Chen, Yuze He, and Tzu-Mao Li

REFERENCES
Michael Ashikhmin, Simon Premože, Peter Shirley, and Brian Smits. 2001. A variance

analysis of the Metropolis light transport algorithm. Computers & Graphics 25, 2
(2001), 287–294.

Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon. 2020. Deep
combiner for independent and correlated pixel estimates. ACM Trans. Graph. (Proc.
SIGGRAPH Asia) 39, 6 (2020), 242–1.

Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon. 2023. Input-
Dependent Uncorrelated Weighting for Monte Carlo Denoising. In SIGGRAPH Asia
Conference Proceedings. 1–10.

Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill,
Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-predicting convolu-
tional networks for denoising Monte Carlo renderings. ACM Trans. Graph. (Proc.
SIGGRAPH) 36, 4 (2017), 97:1–97:14.

Martin Balint, Krzysztof Wolski, Karol Myszkowski, Hans-Peter Seidel, and Rafał Man-
tiuk. 2023. Neural partitioning pyramids for denoising Monte Carlo renderings.
1–11.

Thomas Bashford-Rogers, Luís Paulo Santos, Demetris Marnerides, and Kurt Debattista.
2021. Ensemble Metropolis Light Transport. ACM Trans. Graph. 41, 1, Article 5
(2021), 15 pages.

Benedikt Bitterli. 2016. VeachAjar. https://benedikt-bitterli.me/resources/.
Benedikt Bitterli andWojciech Jarosz. 2019. Selectively Metropolised Monte Carlo Light

Transport Simulation. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 38, 6, Article
153 (2019), 10 pages.

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Reconstruc-
tion of Monte Carlo Image Sequences Using a Recurrent Denoising Autoencoder.
ACM Trans. Graph. (Proc. SIGGRAPH) 36, 4, Article 98 (2017), 12 pages.

David Cline, Justin Talbot, and Parris Egbert. 2005. Energy Redistribution Path Tracing.
ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3 (2005), 1186–1195.

Markus Ebke. 2021. LightSheet. https://benedikt-bitterli.me/resources/.
Hangming Fan, Rui Wang, Yuchi Huo, and Hujun Bao. 2021. Real-time Monte Carlo

denoising with weight sharing kernel prediction network. Comput. Graph. Forum
40, 4 (2021), 15–27.

Michaël Gharbi, Tzu-Mao Li, Miika Aittala, Jaakko Lehtinen, and Frédo Durand. 2019.
Sample-based Monte Carlo Denoising Using a Kernel-splatting Network. ACM
Trans. Graph. (Proc. SIGGRAPH) 38, 4, Article 125 (2019), 12 pages.

Adrien Gruson, Rex West, and Toshiya Hachisuka. 2020. Stratified Markov Chain
Monte Carlo Light Transport. Comput. Graph. Forum (Proc. Eurographics) 39, 2
(2020), 351–362.

Toshiya Hachisuka, Anton S Kaplanyan, and Carsten Dachsbacher. 2014. Multiplexed
Metropolis light transport. ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4, Article 100
(2014), 10 pages.

Jon Hasselgren, Jacob Munkberg, Marco Salvi, Anjul Patney, and Aaron Lefohn. 2020.
Neural temporal adaptive sampling and denoising. Comput. Graph. Forum (Proc.
Eurographics) 39, 2 (2020), 147–155.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning
for image recognition. In Computer Vision and Pattern Recognition. 770–778.

Mustafa Işık, Krishna Mullia, Matthew Fisher, Jonathan Eisenmann, and Michaël Gharbi.
2021. Interactive Monte Carlo denoising using affinity of neural features. ACM
Trans. Graph. (Proc. SIGGRAPH) 40, 4, Article 37 (2021), 13 pages.

Wenzel Jakob. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.
Wenzel Jakob and Steve Marschner. 2012. Manifold exploration: a Markov Chain Monte

Carlo technique for rendering scenes with difficult specular transport. ACM Trans.
Graph. (Proc. SIGGRAPH) 31, 4, Article 58 (2012), 13 pages.

Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. 2015. A Machine Learning
Approach for Filtering Monte Carlo Noise. ACM Trans. Graph. (Proc. SIGGRAPH)
34, 4, Article 122 (2015), 12 pages.

Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A
simple and robust mutation strategy for the Metropolis light transport algorithm.
Comput. Graph. Forum (Proc. Eurographics) 21, 3 (2002), 531–540.

Diederick P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization.
(2015).

Shinya Kitaoka, Yoshifumi Kitamura, and Fumio Kishino. 2009. Replica Exchange Light
Transport. Comput. Graph. Forum 28, 8 (2009), 2330–2342.

Matias Koskela, Kalle Immonen, Markku Mäkitalo, Alessandro Foi, Timo Viitanen,
Pekka Jääskeläinen, Heikki Kultala, and Jarmo Takala. 2019. Blockwise multi-order
feature regression for real-time path-tracing reconstruction. ACM Trans. Graph. 38,
5 (2019), 1–14.

Yu-Chi Lai, , Feng Liu, and Charles Dyer. 2009. Physically-based Animation Rendering
with Markov Chain Monte Carlo. Technical Report UW-CS-TR-1653. University of
Wisconsin - Madison Computer Sciences Department.

Zhengqin Li, Ting-Wei Yu, Shen Sang, Sarah Wang, Meng Song, Yuhan Liu, Yu-Ying
Yeh, Rui Zhu, Nitesh Gundavarapu, Jia Shi, et al. 2021. OpenRooms: An open
framework for photorealistic indoor scene datasets. In Computer Vision and Pattern
Recognition. 7190–7199.

Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu
Timofte, and Luc Van Gool. 2022a. VRT: A video restoration transformer. arXiv
preprint arXiv:2201.12288 (2022).

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte.
2021. SwinIR: Image restoration using swin transformer. In International Conference
on Computer Vision. 1833–1844.

Jingyun Liang, Yuchen Fan, Xiaoyu Xiang, Rakesh Ranjan, Eddy Ilg, Simon Green,
Jiezhang Cao, Kai Zhang, Radu Timofte, and Luc V Gool. 2022b. Recurrent video
restoration transformer with guided deformable attention. Advances in Neural
Information Processing Systems 35 (2022), 378–393.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. 2021. Swin transformer: Hierarchical vision transformer using shifted
windows. In International Conference on Computer Vision. 10012–10022.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell,
and Saining Xie. 2022. A ConvNet for the 2020s. In Computer Vision and Pattern
Recognition. 11976–11986.

Fujun Luan, Shuang Zhao, Kavita Bala, and Ioannis Gkioulekas. 2020. Langevin
Monte Carlo Rendering with Gradient-Based Adaptation. ACM Trans. Graph. (Proc.
SIGGRAPH) 39, 4, Article 140 (2020), 16 pages.

Rafał K Mantiuk, Gyorgy Denes, Alexandre Chapiro, Anton Kaplanyan, Gizem Rufo,
Romain Bachy, Trisha Lian, and Anjul Patney. 2021. FovVideoVDP: A visible differ-
ence predictor for wide field-of-view video. ACM Trans. Graph. (Proc. SIGGRAPH)
40, 4, Article 49 (2021), 19 pages.

SohamUdayMehta, BrandonWang, and Ravi Ramamoorthi. 2012. Axis-aligned filtering
for interactive sampled soft shadows. ACM Trans. Graph. (Proc. SIGGRAPH Asia)
31, 6 (2012), 1–10.

Xiaoxu Meng, Quan Zheng, Amitabh Varshney, Gurprit Singh, and Matthias Zwicker.
2020. Real-time Monte Carlo Denoising with the Neural Bilateral Grid. In
Eurographics Symposium on Rendering - DL-only Track. 13–24.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems. 8024–8035.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional net-
works for biomedical image segmentation. In International Conference on Medical
Image Computing and Computer-assisted Intervention. 234–241.

Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R Alla
Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn, andMarco
Salvi. 2017. Spatiotemporal variance-guided filtering: real-time reconstruction for
path-traced global illumination. In High Performance Graphics. 1–12.

Manu Mathew Thomas, Gabor Liktor, Christoph Peters, Sungye Kim, Karthik
Vaidyanathan, and Angus G Forbes. 2022. Temporally stable real-time joint neural
denoising and supersampling. Proceedings of the ACM on Computer Graphics and
Interactive Techniques (Proc. HPG) 5, 3 (2022), 1–22.

Hugo Touvron, Matthiegu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablay-
rolles, and Hervé Jégou. 2021. Training data-efficient image transformers & distilla-
tion through attention. In International Conference on Machine Learning. 10347–
10357.

Joran Van deWoestijne, Roald Frederickx, Niels Billen, and Philip Dutré. 2017. Temporal
coherence for Metropolis light transport. In Eurographics Symposium on Rendering
- Experimental Ideas & Implementations. 55–63.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances
in neural information processing systems 30 (2017).

Eric Veach. 1998. Robust Monte Carlo methods for light transport simulation. Stanford
University.

Eric Veach and Leonidas J Guibas. 1997. Metropolis light transport. In SIGGRAPH.
65–76.

Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard Röthlin, Alex Harvill, David
Adler, Mark Meyer, and Jan Novák. 2018. Denoising with kernel prediction and
asymmetric loss functions. ACM Trans. Graph. (Proc. SIGGRAPH) 37, 4 (2018),
1–15.

Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang Liu, and
Houqiang Li. 2022. Uformer: A general U-shaped transformer for image restoration.
In Computer Vision and Pattern Recognition. 17683–17693.

Lifan Wu, Ling-Qi Yan, Alexandr Kuznetsov, and Ravi Ramamoorthi. 2017. Multiple
axis-aligned filters for rendering of combined distribution effects. Comput. Graph.
Forum (Proc. EGSR) 36, 4 (2017), 155–166.

Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman, and Anton
Kaplanyan. 2020. Neural Supersampling for Real-time Rendering. ACM Trans.
Graph. (Proc. SIGGRAPH) 39, 4 (2020).

Ling-Qi Yan, Soham Uday Mehta, Ravi Ramamoorthi, and Fredo Durand. 2015. Fast
4D sheared filtering for interactive rendering of distribution effects. ACM Trans.
Graph. 35, 1 (2015), 1–13.

ACM Trans. Graph., Vol. 43, No. 4, Article 123. Publication date: July 2024.

Temporally Stable Metropolis Light Transport Denoising using Recurrent Transformer Blocks • 123:13

Jiaqi Yu, Yongwei Nie, Chengjiang Long, Wenjun Xu, Qing Zhang, and Guiqing Li.
2021. Monte Carlo denoising via auxiliary feature guided self-attention. ACM Trans.
Graph. 40, 6 (2021), 273–1.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,
and Ming-Hsuan Yang. 2022. Restormer: Efficient transformer for high-resolution
image restoration. In Computer Vision and Pattern Recognition. 5728–5739.

Henning Zimmer, Fabrice Rousselle, Wenzel Jakob, Oliver Wang, David Adler, Wojciech
Jarosz, Olga Sorkine-Hornung, and Alexander Sorkine-Hornung. 2015. Path-space
motion estimation and decomposition for robust animation filtering. Comput. Graph.
Forum (Proc. EGSR) 34, 4 (2015), 131–142.

Tobias Zirr and Carsten Dachsbacher. 2020. Path differential-informed stratified MCMC
and adaptive forward path sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia)
39, 6 (2020), 1–19.

Matthias Zwicker,Wojciech Jarosz, Jaakko Lehtinen, BochangMoon, Ravi Ramamoorthi,
Fabrice Rousselle, Pradeep Sen, Cyril Soler, and S-E Yoon. 2015. Recent advances in
adaptive sampling and reconstruction for Monte Carlo rendering. Comput. Graph.
Forum (Proc. Eurographics STAR) 34, 2 (2015), 667–681.

A NETWORK ARCHITECTURE
The base channel number of the encoder-decoder is 48, and the base
head number of the multi-head self-attention/cross-attention mod-
ule is 1. The channel number and head number would be doubled
as the feature resolution is halved. We use the same downsample
and upsample method used in Zamir et al. [2022]’s method, which
applies PixelUnshuffle and PixelShuffle after a 3×3 unbiased convolu-
tion layer. The skip connection in the decoding blocks concatenates
the encoding output of the same shape and blends them with a 1× 1
convolution.

In the denoising pipeline, the input resolution is adaptive, but the
channel number is fixed at 22, including normalized radiance from
4 MLT components from the sample decomposition (12), distance
buffer (1), albedo buffer (3), shading normals buffer (3) and world
positions buffer (3). The output channel number of each decoding
block is 432, which constitutes 4 sets of 5 × 5 temporal kernel, 9 × 9
kernel, and 2 blending weights. The last decoding block has fewer
output channels since the output would not be composed upward.

B DATASET GENERATION
Scenes in our dataset are modified from a subset of the original
OpenRooms dataset. We made slight modifications to the original
scene configurations to tailor them to our research needs. We illus-
trate some example scenes of our dataset in Fig. 13. The following
sections introduce how we modify the indoor scenes.

B.1 Geometry and Lights
We remove all indoor emitters and replace the outdoor HDR envi-
ronment maps with area lights and spot lights outside the window.
The fixed area lights keep the overall brightness of the room, and
the moving spot lights create moving shadows and caustics.

B.2 Materials and Textures
We use 3 different types of materials on the indoor objects: glass,
plastic and metal, accounting for 50%, 30% and 20% respectively. We
use Mitsuba’s smooth dielectric, rough plastic (with GGX distribu-
tion) and rough conductor (also with the GGX distribution) as the
BSDF of these materials. We apply textures from the original Open-
Rooms to the plastic objects to closely replicate their appearance.

Fig. 13. Example scenes from our modified OpenRooms dataset.

B.3 Cameras and Animations
The original OpenRooms dataset offers an average of 30 camera
configurations per scene. We generated an equivalent number of
60-frame animated sequences by interpolating between adjacent
camera settings (including considering the last setting as adjacent
to the first). For the part of the train dataset and validation dataset,
we only rendered the initial 7 of the 60 frames for each camera
configuration.

C METRICS FOR TEMPORAL STABILITY
We study different metrics’ ability to measure temporal stability
by evaluating them on the 60-frame animation of the scene Mon-
key [Ebke 2021]. We choose TPSNR [Balint et al. 2023; Hasselgren
et al. 2020], TRMAE [Işık et al. 2021] used in previous work, and
perceptual-informed metrics FovVideoVDP [Mantiuk et al. 2021].
We compare images rendered by MLT and bidirectional path tracing
(BDPT) at a similar rendering time. The evaluation result in Table 5
shows that animations rendered by two algorithms have similar TP-
SNR and TRAME, and MLT even performs a little better. However,
the FovVideoVDP shows that BDPT is much more temporally stable
than MLT. We visualize the errors between the noisy renderings
and reference for both algorithms at 3 consecutive frames in Fig. 14.
The error maps show that MLT generates more concentrated errors
and such errors fluctuate more intensely between frames, which
finally causes the flickering artifacts that can be easily perceived by
human eyes. Our study shows that FoVVDP is more consistent with
the human perspective and explains the reason why we only use
FoVVDP as the metric to evaluate temporal stability.

ACM Trans. Graph., Vol. 43, No. 4, Article 123. Publication date: July 2024.

123:14 • Chuhao Chen, Yuze He, and Tzu-Mao Li

Table 5. Comparison of 3 different metrics that measure temporal stability.
The metrics are measured on noisy images rendered by two algorithms.

Rendering Algorithm TPSNR ↑ TRMAE↓ FoVVDP↑

MLT / 16spp 16.626 2.146 7.234
BDPT / 8spp 16.549 2.251 8.630

Frame 1

MLT Error Map

BDPT Input

BDPT Error Map

MLT Input

Frame 2 Frame 3

Frame 1 Frame 2 Frame 3

Frame 1 Frame 2 Frame 3

Frame 1 Frame 2 Frame 3

Fig. 14. The noisy renderings and their errors compared with the references.
Blue is positive error and Red is negative error.

ACM Trans. Graph., Vol. 43, No. 4, Article 123. Publication date: July 2024.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Metropolis Light Transport
	2.2 Learning-Based Monte Carlo Denoising
	2.3 Modern Denoiser Based on Transformer

	3 MLT Denoising with Recurrent Transformer Blocks
	3.1 Sample Decomposition for MLT
	3.2 Recurrent transformer blocks for temporal accumulation
	3.3 Hierarchical Kernel Application
	3.4 Why recurrent blocks are necessary for MLT denoising

	4 Dataset and Implementation Details
	4.1 Dataset
	4.2 Loss Function
	4.3 Implementation Details

	5 Results
	5.1 Metrics
	5.2 Comparision of Different Denoising Methods
	5.3 Generalization to unseen samples
	5.4 Ablation Study
	5.5 Denoising renderings for other MCMC algorithms
	5.6 Limitations

	6 Conclusion
	Acknowledgments
	References
	A Network Architecture
	B Dataset Generation
	B.1 Geometry and Lights
	B.2 Materials and Textures
	B.3 Cameras and Animations

	C Metrics for Temporal Stability

